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We describe flow-visualization experiments and theory on the two-dimensional 
unsteady flow of an incompressible fluid in a channel with a time-dependent 
indentation in one wall. There is steady Poiseuille flow far upstream, and the 
indentation moves in and out sinusoidally, its retracted position being flush with the 
wall. The governing parameters are Reynolds number Re, Strouhal number (frequency 
parameter) St and amplitude parameter E (the maximum fraction of the channel width 
occupied by the indentation) ; most of the experiments were performed with E % 0.4. 
For St < 0.005 the flow is quasi-steady throughout the observed range of Re 
(360 < Re < 1260). For St > 0.005 a propagating train of waves appears, during 
every cycle, in the core flow downstream of the indentation, and closed eddies form 
in the separated flow regions on the walls beneath their crests and above their troughs. 
Later in the cycle, a second, corotating eddy develops upstream of the first in the 
same separated-flow region (' eddy doubling '), and, later still, three-dimensional 
disturbances appear, before being swept away downstream to leave undisturbed 
parallel flow at the end of the cycle. The longitudinal positions of the wave crests 
and troughs and of the vortex cores are measured as functions of time for many values 
of the parameters; they vary with St but not with Re. Our inviscid, long-wavelength, 
small-amplitude theory predicts the formation of a wavetrain during each cycle, in 
which the displacement of a core-flow streamline satisfies the linearized Korteweg- 
de Vries equation downstream of the indentation. The waves owe their existence to 
the non-zero vorticity gradient in the oncoming flow. Eddy formation and doubling 
are not described by the theory. The predicted positions of the wave crests and 
troughs agree well with experiment for the larger values of St used (up to 0.077), but 
less well for small values. Analysis of the viscous boundary layers indicates that the 
inviscid theory is self-consistent for sufficiently small time, the time of validity 
increasing as St increases (for fixed e). 

1. Introduction 
The motivation for .this investigation is to understand incompressible fluid flow 

through collapsible tubes such as arteries and veins. Earlier laboratory experiments 
have used rubber tubes, compressed by a local region of high external pressure, in 
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which large-amplitude, self-excited oscillations are often observed (e.g. Conrad 1969 ; 
Ur & Gordon 1970; Bertram 1982). Theoretical models indicate thrtt the dynamics 
of the oscillations are strongly influenced by the energy dissipation in the flow through 
the collapsed segment of tube (Katz, Chen & Moreno 1969; Bertram & Pedley 1982; 
Cancelli & Pedley 1985). At values of the Reynolds number relevant to large blood 
vessels (2 300, say) most of this dissipation is associated with flow separation from 
the time-dependent constriction. In the theoretical models the energy dissipation has 
been estimated on the assumption that the flow is quasi-steady, but this cannot be 
accurate for the observed oscillations, since the Strouhal number St can be as high 
as unity (Bertram 1982). Here 

St = a/Eo T ,  (1) 

where a = tube diameter, Go = velocity scale for flow through the uncollapsed tube 
and T = oscillation period. 

In  order for an oscillatory flow to be quasi-steady the unsteady inertia terms in the 
equation of motion must be small compared with both the convective inertia terms 
and the viscous terms. This requires that two dimensionless parameters are small, 
St and the viscous frequency parameter ReSt, where the Reynolds number is 

Re = aGo/v (2) 

and v is the kinematic viscosity. Since the Strouhal number is not small for self-excited 
oscillations, and Re St is even larger, future theoretical models must incorporate the 
unsteady fluid dynamics of separated flow. 

Sobey (1980, 1982, 1983), Stephanoff, Sobey & Bellhouse (1980) and Savvides & 
Gerrard ( 1984) have made experimental and numerical studies of two-dimensional 
unsteady separated flows in rigid non-uniform channels. The channels in these studies 
were periodic in the streamwise direction and, except for Sobey (1982), symmetric 
about the centreplane. The flows were oscillatory, with and without a mean 
component. These papers show that the flow patterns are quasi-steady throughout 
the cycle if St and Re,St are very small (where Re, is peak Reynolds number), and 
for part of the cycle at larger values of these parameters. Sobey (1983) has proposed 
St < 0.2Repa as the condition for quasisteadiness throughout the cycle at moderate 
values of Re, ( < 100). 

Bertram & Pedley (1983) investigated impulsively started, but subsequently 
steady, laminar flow past a single, fixed, slender indentation in one wall of an 
otherwise parallel-sided channel. Flow-visualization experiments showed that the 
flow field on the downstream slope of the indentation did not reach a steady state until 
a dimensionless time t 2 75, where t = Eiio/a, E is dimensional time, Go is the average 
velocity in the channel far upstream and a is now the unconstricted channel width. 
In  contrast, pressure measurements showed that the pressure drop along the 
downstream slope became approximately steady after a dimensionless time in the 
range 7 < t < 10. These values oft  were virtually independent of Reynolds number 
in the range 500 < Re < 1500. Inverting them suggests that the pressure drop in 
oscillatory flow may be quasi-steady if St < 0.1, but that the flow patterns may not 
be quasi-steady unless St < 0.01. 

All the above studies were carried out in channels with fixed walls. In  order to model 
more closely the conditions in an oscillating collapsible tube, we have performed 
experiments on water flow in a rectangular channel in which a section of one wall 
is moved in and out (see figure 2). The experiments are still highly idealized, because 
prescribing the motion of the moving section uncouples the fluid mechanics from the 
effects of wall elasticity. Moreover, we have followed the previous investigators in 
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FIGURE 1 .  Sketch of eddies observed on steady flow over a backward-facing step 
by Armaly et al. (1983). 

considering approximately two-dimensional flow, which is probably more relevant 
than pipe flow to flow in a collapsed tube. The indentation, formed by a thick rubber 
membrane moulded over a square piston, is pushed sinusoidally into the channel from 
a flush position. The flow in the channel upstream of the indentation is steady 
Poiseuille flow. In the experiments very small particles are used to visualize the flow 
past the indentation. 

The flow visualization reveals that there are two flow regimes. If St is less than 
the critical value of 0.005 (independent of Re in the observed range 360 < Re < 1260) 
the flow is quasi-steady in that a single eddy forms on the downstream slope of the 
indentation and develops and decays in phase with the wall oscillations. If St 2 0.005 
the flow is no longer quasi-steady; during each cycle a propagating train of waves 
appears in the core flow downstream of the indentation, and closed eddies form in 
the separated-flow regions beneath their crests and above their troughs (see figure 
5) .  Later in the cycle, in many cases, second, corotating eddies develop in the same 
separated-flow regions, upstream of the primary eddies. We refer to this phenomenon 
as ‘eddy doubling’. Still later in the cycle the flow becomes markedly disturbed in 
all cases ; however, all disturbances are swept downstream before the indentation is 
fully retracted at the end of the cycle. Thus the perturbed flow of one cycle does not 
interact with the waves and eddies that develop during the next cycle. Some of our 
observations have already been reported in Stephanoff et al. (1983). 

Armaly et al. (1983) and Sobey (1985) have also observed multiple eddies in 
asymmetric channel flow. Armaly et aE. investigated steady flow past a backward-facing 
step and found, both numerically and from laser-Doppler velocity measurements, 
that: (a) for Re < 400 there is a single eddy A in the lee of the step; (b) for 
400 < Re < 1200 there is a second eddy B on the plane wall opposite the reattachment 
point of the first eddy; and ( c )  for 1200 < Re < 2300 a third eddy C is present further 
downstream on the wall with the step (see figure 1) .  Sobey studied oscillatory flow 
with zero mean velocity past a step, and observed both numerically and experi- 
mentally that, during the part of the cycle when the step is backward-facing, a 
wavetrain forms which is similar to that observed in this study. 

A number of authors have presented asymptotic, large-Re theories for laminar 
unsteady flow in asymmetric channels. The first to consider steady upstream flow 
past a moving indentation was Smith (1976b), who formulated an interactive, 
nonlinear, unsteady boundary-layer problem for indentations whose length ha, 
maximum height Ea ( E  < 1) and Strouhal number St are related to each other and 
to the Reynolds number Re by 

A = O(E+), st = O ( d )  ( 3 4  

and E = O(Re-.f) (3b) 
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The linearized version of Smith’s problem (E  Re:+0) was examined thoroughly by 
Bogdanova & Ryzhov (1983), who showed that Tollmien-Schlichting waves are 
generated in critical layers of thickness O(aRe3) at the wall and propagate 
downstream. They are associated with waves of displacement on the streamlines in 
the core. They decay with distance if the frequency of wall oscillation is sufficiently 
small, but grow, leading to instability, if the frequency exceeds a critical value given 
(in our notation) by 2nStRe) x 4.98. The wavenumber of the critical waves is 
6.39/a Re:. Duck (1985) has demonstrated a similar result for an oscillating indentation 
in a Blasius boundary layer. 

Secomb (1979), on the other hand, considered the large-amplitude limit of Smith’s 
problem ( E  Ref+ao), and showed that the equation for the streamline displacement 
in the core, downstream of the indentation, satisfies a simple evolution equation : the 
linearized Korteweg4e Vries equation, which clearly exhibits wave propagation. 
This result has been placed in the wider context of large-amplitude Tollmien- 
Schlichting waves on general shear flows by Smith & Burggraf (1985). In Stephanoff 
et a$. (1983) Secomb’s equation was rederived and extended, and was shown to arise 
as a consequence of neglecting viscosity from the start. The solution of this equation 
was seen to exhibit several properties in common with the experiments. In the present 
paper we develop this theory again, but in addition we investigate the conditions in 
which viscous effects can be neglected. 

The outline of the paper is as follows. In  $ 2  the experimental apparatus and 
flow-visualization technique are described, and the observations (including some data 
on upstream separation in steady flow) are presented together with such quantitative 
measurements of the waves and eddies as are possible. In  $ 3  the inviscid theory is 
developed, and comparisons between theoretical prediction and experimental obser- 
vation are made. The effect of viscous boundary layers and their separation is also 
discussed. In $4 there is further discussion, especially of the eddy-doubling 
phenomenon. 

2. Experiments 
2.1. Apparatus and methods 

The experimental system (figure 2 )  was adapted from that used by Bertram & Pedley 
(1983). The closed channel is 2.5 m long, 10 mm wide and 100 mm deep; it has rigid 
walls except for the indentation in one vertical wall. The narrower, horizontal walls 
are made of perspex, and there are perspex windows (of length 100 mm and 180 mm) 
in the vertical wall opposite the indentation. The indentation consists of a thick 
rubber membrane, which begins 1.2 m from the channel inlet, is 165 mm long and 
over 100 mm deep. It is moulded round an (almost) square piston, 100 x 100 mm, that 
can move in and out (see figure 2). Ideally, when the piston is fully retracted the 
membrane is flush with the rest of the plane wall; however slight ridges (< 0.4 mm) 
were observed where the membrane passed over the ends of the retracted piston. 

The piston was driven sinusoidally, and its amplitude and period were adjustable. 
During the first half of the cycle the piston pushes the membrane into the channel 
from the flush position. During the second half of the cycle, when the piston is being 
retracted, the pressure of the water in the channel holds the membrane against the 
piston and prevents the two sloping parts of the membrane from bulging into the 
channel. The displacement of the piston from its retracted position was measured with 
a RM 700 strain-gauge displacement transducer (Shape Industries),; the motion of the 
piston was compared on an oscilloscope screen with sine waves from a waveform 
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FIQURE 2. (a) Sketch of the horizontal channel midplane, showing the section with the moving 
indentation in one wall, and windows in the opposite wall. Dimensionless variables are also marked 
(see $3.1). (b)  Sketch of the cross-section of the channel, showing the membrane wrapped around 
the piston at the top and bottom. 

generator, and was found to be sinusoidal. In  each experiment, the amplitude was 
recorded to the nearest 0.1 mm; it is defined as the maximum protrusion of the 
indentation, €a. The values of e in the unsteady experiments reported here are 0.28, 
0.38, 0.57; other values of E were used when the indentation was fixed. The period 
T of the piston oscillations was measured to within 0.1 s using a Hall-effect switch 
and a period counter. The lowest period was 2.7 s, and the highest period that was 
recorded photographically was 15.5 s; longer periods, though, were observed but not 
photographed. 

A Flostat type-V control valve upstream of the channel kept the flow rate of the 
water entering the channel steady, so that the variations of flow rate caused by the 
piston motion were confined to the downstream segment of channel. For flow rates 
in the range 2.88-6.00 1 min-' the flow was steady at  all frequencies of oscillation, 
but for flow-rates in the range 6.00-7.59 1 min-' the flow could be kept steady only 
for oscillation periods greater than 10 s. A t  the higher flow rates and shorter periods 
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the mean pressure in the system had to be raised both to maintain constant flow rate 
into the channel and to prevent the membrane from bulging. The steadiness of the 
flow was checked by observing the weight in a rotameter just upstream of the control 
valve. The flow rates were measured by making timed collections of the water in a 
graduated container. The range of average velocities U,, in the unconstricted channel 
corresponding to the above range of flow rates is 0.036-0.126 m s-l. This gives 
Reynolds numbers in the range 360 < Re < 1260 if the kinematic viscosity is assumed 
to be 1.00 x m2 s-l. (The temperature of the water varied between 18 "C and 
23OC on different occasions, so that the kinematic viscosity v varied between 
1.06 x lo-'' m2 s-l and 0.94 x m2 s-l. However, the principal features of the flow 
prove to be Reynolds-number-independent, so assuming constant v does not introduce 
significant errors.) The range of Strouhal numbers St for which records were taken 
was 0.0052 < St < 0.077. 

We assume that the flow upstream of the indentation is fully-developed Poiseuille 
flow, because even at Re = 1260 the entrance length for steady two-dimensional 
channel flow is significantly less than 1.2 m (entrance length = 0 . 0 4 ~  Re (Schlichting 
1968, p. 178), equal to approximately 0.5 m in this case). We also assume that the 
flow near the centreplane of the channel is effectively two-dimensional (see figure 7 
and $4). 

The fluid motion was made visible with light-reflecting pearl-essence particles 
known as 'Mearlmaid AA', which remain suspended in the circulating fluid for times 
in excess of 1 h. The flow was illuminated at the channel centreplane by a collimated 
beam of light shining through one of the vertical windows. Motion pictures and still 
photographs of the flow were taken at right angles to the beam of light; the motion 
pictures were used to obtain general information about the flow and the still 
photographs were used to obtain detailed information about the unsteady flow at 
predetermined times in a cycle. The exposure times for the still photographs were 
either t s or s. Both the dimensionless time t ,  between the start of the piston's 
movement into the channel and the first photograph and the dimensionless time delay 
At between photographs in a cycle were adjustable. These parameters were kept 
unchanged in most experimental runs of different periods. The field of view of the 
camera was not wide enough to photograph all the flow that was visible through the 
perspex windows in the channel. Consequently, to obtain photographs such as those 
shown in figure 5 ,  the camera was placed at  two locations with overlapping fields of 
view. The left halves of the composite photographs in that figure, which include the 
downstream end of the constriction, are from one cycle and the right halves from 
another. In steady flow a few observations were made in the neighbourhood of the 
upstream end of the indentation. 

2.2. Observations 
Fixed indentation 

When the piston is stationary and protruding into the channel, a single eddy is 
observed along the downstream-sloping wall of the indentation (figure 3a) .  For the 
smaller Reynolds numbers in the range studied the eddy is confined to the vicinity 
of the concave corner. As Re is increased for a fixed indentation height, the separation 
point moves upstream until it  reaches the point where the downstream slope begins, 
where it remains fixed; this is consistent with the observations of Bertram & Pedley 
(1983). The reattachment point moves downstream a t  first, until a value of Reis  
reached at  which unsteady oscillations appear in the shear layer between the eddy 
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FIQURE 3. (a) Photograph of the downstream separated eddy A in steady flow; E = 0.35, Re = 290. 
Because the camera was slightly oblique to the plane of light in this photograph, the membrane 
appears to be thicker than it actually is. The boundary of the channel is approximately at the centre 
of the white strip that defines the membrane surface. (b) Photograph of an upstream separated eddy 
in steady flow: E = 0.8, Re = 1390. ( c )  Photograph of upstream eddies in steady flow; E = 0.8, 
Re = 448. 
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FIGURE 4. The Reynolds number at which upstream separation is first observed, plotted against B. 

and the mainstream. Thereafter the mean position of the reattachment point at first 
moves upstream with increasing Re and then remains more or less fixed. This 
behaviour is consistent with the measurements of Armaly et al. (1983). We saw no 
evidence of the steady second and third eddies (B and C of figure 1) reported by 
Armaly et al. for a sharp-cornered step, with E = 0.5. Such eddies may be present, 
but could not be observed because the fluid velocities in them are too small. Unsteady 
eddies which propagate downstream are observed along both the vertical channel 
walls once the amplitude of shear-layer oscillations has become larger. We interpret 
these as a feature of the shear-layer instability process and not as part of the basic 
laminar flow. 

We also observe evidence of upstream separation for sufficiently large values of E 

and Re, in that a weak recirculating eddy forms at the concave corner (figure 3b). The 
reattachment point moves downstream as Re is increased (for fixed E), until it reaches 
the convex corner. The separation point is ill-defined, but appears to move slowly 
upstream as Re increases, as predicted by Smith & Duck (1980). In figure 4 the value 
of Re at which upstream separation is first observed is plotted against 8. 

For very severe constrictions (E 2 0.8) we also observe one, and sometimes two, 
fixed, clockwise-rotating eddies along the plane wall opposite the upstream slope of 
the indentation (figure 3c). Such eddies were not predicted by Smith & Duck (1980), 
who found a self-consistent solution on the assumption that the flow on the plane 
wall remains attached. 

Oscillating indentation 
In this case there are three dimensionless parameters St, Re and E ;  in addition the 

times at  which the observations are made must be specified. The dimensionless time 
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t is scaled on the period T, so that t = 0 when the membrane is flush with the wall 
and t = 1 when it is again flush. The sinusoidal displacement mg(t)  of the part of the 
membrane fixed on the piston is then given by 

g( t )  = f ( 1 - C O S 2 R t ) .  (4) 

Thus the indentation is accelerating into the channel for 0 < t < 0.25, it  is still 
advancing but decelerating for 0.25 < t < 0.5, it  is accelerating towards the wall for 
0.5 < t < 0.75, and it is decelerating back to its flush position for 0.75 < t < 1. The 
flow downstream in the channel is therefore accelerated for O < t < 0 . 2 5  and 
0.75 < t < 1, and decelerated for 0.25 < t < 0.75. All the observations to be reported 
in this section are made downstream of the indentation. 

For very low frequencies, with St < 0.005 and for all E ,  Re in the range examined, 
the structure of the observed flow is essentially quasi-steady: except near t = 0 and 
t = 1, a single separated eddy A is present on the downstream slope of the 
indentation, as in figure 3 (a).  Downstream of the eddy the observed streamlines in 
the main stream fan out and become parallel again (the observed curves are 
approximately streamlines, since they consist of the union of many short pathlines). 

When St > 0.005 the flow is not quasi-steady ; an example is shown in figure 5 ,  which 
contains photographs taken at  intervals through the cycle during a single run with 
E = 0.38, St = 0.038, Re = 610. Sketches of the flow patterns revealed in this figure 
are presented in figure 6. Near the beginning of the cycle, while the piston is 
accelerating, a single separated eddy A forms on the sloping wall of the indentation, 
and the core-flow streamlines remain parallel downstream of it. As t increases, eddy 
A increases in length. By t = 0.34 (figure 5 a ) ,  however, a small upwards wave has 
appeared on the core-flow streamlines, and a second separated eddy B is beginning 
to form on the opposite wall, downstream of A. Figures 5 ( m )  show that this wave 
and eddy grow and move downstream with time. By t = 0.48 (figure 5c)  there is 
evidence of a downwards wave and a third eddy C forming on the wall with the 
indentation, and these too grow and move downstream. A fourth eddy D has 
appeared on the plane wall by t = 0.55 (figure 5 4 ,  and a fifth E is seen on the other 
wall by t = 0.62 (figure 5e). Once they have formed, all the eddies and waves move 
downstream with a speed that is less than both Go and the speed of propagation of 
the wave front. 

The ‘eddy-doubling ’ phenomenon is observed in figures 5 (c-f) and 6 (c-f). Figure 
5 ( c )  shows that the vortex centre of the clockwise-rotating eddy in the separated-flow 
region under wave B is located in the downstream half of the region. A second eddy, 
also rotating in a clockwise sense, subsequently develops in the upstream half, as 
shown in figures 5(d-e),  and a double peak appears on the core streamlines in wave 
B. Wave C and the associated separated region exhibit the same phenomenon a little 
later in the cycle, but with both eddies rotating in a counterclockwise sense (figure 
5 e ,  f ) ;  the double peak in the core atreamlines is more marked in this case. In  both 
cases the upstream eddy grows to a larger size than the primary eddy. Examination 
of the cine films and videotapes indicates that the wave in the core flutters just prior 
to the eddy doubling. The whole process of wave and eddy generation, and eddy 
doubling, is entirely determinate, occurring at the same time and place during every 
cycle of a run at fixed values of the governing parameters. 

Later in the cycle, the flow becomes disordered (figures 5g, h). The particle pathlines 
have a smeared appearance, symptomatic of significant three-dimensionality , and the 
eddies break down into turbulence. As the cycle ends, all the disturbances are swept 
away downstream (figure 5i) and the cycle begins again from an undisturbed state. 
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FIGURE 5. Photographs of the midplane, taken from above, showing the development of the flow 
field downstream of the oscillating indentation. The mean flow is from left to right, and the 
governing parameters are Re = 610, St = 0.038, E = 0.38. The dimensionless times at  which the 
photographs were taken are (a) t = 0.34; (b)  0.41; (c) 0.48; (d) 0.55; (e) 0.62; c f )  0.69; (9 )  0.76; ( h )  
0.84; (i) 0.91. The second eddy B is first visible in (b), the third C in (c) and the fourth D in (d).  
Eddy doubling has occurred in (e) (eddy B) and cf)  (eddy C) (from Stephanoff et al. 1983). 

The fact that the flow pattern is essentially two-dimensional until the final 
breakdown is demonstrated in figure 7, which contains photographs taken through 
the downstream window in the vertical wall. Note that the values of the parameters 
for this run are slightly different from those of figure 5.  The pale streak in figure 7 (a) 
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FIQURE 6. Sketch of the flow patterns revealed by figure 5. 

represents eddy B just after it has doubled, and appears to correspond to the region 
between the two parts of eddy B (compare figure 7 (a)  with figure 5 (e): the bright 
marks on the wall in figure 5 correspond to the vertical lines in figure 7). Figure 7 (b) 
shows the doubled eddy B, now represented by two streaks, with a faint streak 
opposite the doubled eddy C. Figure 7 (c) shows further development of these streaks, 
and the formation of more, while figure 7 ( d )  shows clearly the three-dimensional 
break-up of eddy B, after the beginning of the next cycle. 

Qualitatively similar observations of wave and eddy generation, and of eddy 
12 B L M  160 
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FIGURE 7 .  Photographs taken from the side, showing the two-dimensional character of the flow 
during eddy generation and doubling. Note the three-dimensional breakup in (d).  Governing 
parameters are E = 0.36, St = 0.039, Re = 615. Dimensionless times of the photographs: (a) 0.60; 
( b )  0.78; (c) 0.96; (d )  1.14. 

doubling, are made in all experiments with E = 0.38 and St > 0.005. At smaller 
amplitude, when E = 0.28, the eddies and waves are generated as before, but eddy 
doubling is observed in only a few cases. At larger amplitude, with E = 0.57, the 
generation and doubling processes take place, but few useful photographs could be 
obtained because the breakdown to turbulence occurs earlier in the cycle, especially 
at higher values of Re. 

2.3. Quantitative results 

The quantitative data presented in this section were obtained from measurements 
of the flow patterns; these were made by projecting the photographic negatives onto 
calibrated, squared paper, and measuring the positions of the principal features of 
the flow. We let the longitudinal coordinate be 2,  and let the middle of the 
downstream slope of the indentation be a t  2 = g1 (figure 2).  The quantities recorded 
from each negative are the dimensionless time t and the values of (2-21)/u for the 
following features. 

(i) The points of maximum and minimum displacement of the core streamlines, 
representing the crests and troughs of the waves. These are recorded as points B, C, 
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Run 

30 
29 
27 
24 
20 
16 
28 
11 
6 

21 
25 
17 
1 

12 
7 

26 
13 
22 
31 
2 

18 
8 

14 
3 
9 

23 
4 

19 
15 
10 
5 

45 
40 
36 
44 
42 
32 
37 
43 
33 
38 
41 
34 
46 
39 
35 

50 
47 
51 
48 
52 
49 

T(s)  

15.1 
15.1 
15.1 
14.9 
15.0 
15.2 
10.2 
15.2 
15.3 
10.1 
10.0 
10.1 
15.5 
10.2 
10.0 
5.9 
7.5 
5.9 
8.0 

10.1 
5.9 
7.5 
5.9 
7.3 
5.9 
3.9 
5.3 
2.9 
2.9 
2.9 
2.7 

14.9 
15.1 
14.9 
10.0 
10.0 
15.1 
10.0 
6.0 

10.0 
5.9 
6.0 
5.9 
3.0 
3.0 
3.0 

15.2 
15.4 
10.0 
10.0 
6.0 
6.0 

st 

0.0052 
0.0056 
0.0062 
0.0071 
0.0076 
0.0089 
0.0091 
0.0095 
0.011 
0.011 
0.01 1 
0.012 
0.013 
0.014 
0.017 
0.018 
0.019 

019 
0.019 
0.020 
0.021 
0.022 
0.025 
0.028 
LO30 
0.030 
0.037 
0.043 
0.047 
0.057 
0.077 

0.0063 
0.0069 
0.0095 
0.0096 
0.012 
0.013 
0.014 
0.019 
0.020 
0.025 
0.033 
0.034 
0.038 
0.048 
0.067 

0.0097 
0.013 
0.015 
0.021 
0.025 
0.035 

Re 

E = 0.38 
1265 
1173 
1068 
940 
882 
737 

1075 
693 
588 
867 
945 
800 
498 
693 
592 
950 
693 
873 
670 
485 
793 
602 
693 
490 
577 
855 
507 
800 
722 
600 
487 

6 = 0.28 
1062 
953 
702 

1033 
866 
508 
703 
860 
502 
687 
512 
502 
880 
692 
495 

675 
480 
680 
482 
669 
477 

E = 0.57 

tl  

0.42 
0.34 
0.42 
0.34 
0.42 
0.34 
0.34 
0.34 
0.39 
0.34 
0.34 
0.42 
0.39 
0.42 
0.34 
0.34 
0.42 
0.34 
0.40 
0.39 
0.34 
0.42 
0.34 
0.30 
0.34 
0.34 
0.30 
0.34 
0.42 
0.34 
0.43 

0.42 
0.42 
0.42 
0.42 
0.42 
0.42 
0.34 
0.50 
0.34 
0.42 
0.42 
0.34 
0.34 
0.34 
0.34 

0.34 
0.34 
0.34 
0.34 
0.34 
0.34 

At 

0.16 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.09 
0.08 
0.08 
0.08 
0.09 
0.08 
0.08 
0.08 
0.08 
0.08 
0.02 
0.09 
0.08 
0.08 
0.08 
0.09 
0.08 
0.08 
0.09 
0.08 
0.08 
0.08 
0.18 

0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 
0.08 

0.08 
0.07 
0.08 
0.08 
0.08 
0.08 

N 

2 
4 
3 
5 
3 
5 
8 
6 
5 
4 
4 
5 
5 
6 
6 
6 
5 
6 

18 
5 
5 
4 
6 
6 
7 
6 
6 
7 
6 
7 
3 

3 
5 
4 
5 
5 
5 
7 
3 
6 
6 
6 
6 
7 
7 
7 

2 
2 
2 
3 
2 
3 

TABLE 1. Data for each run for which measurements were made; t ,  is the dimensionless time of 
the first photograph, At is the time step (fraction of a cycle) between photographs and N is the 
number of photographs taken. 
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D, etc., corresponding to the eddies B, C, D, etc. marked on figures 6 ( d )  or (f). Where 
the crest has a double structure, after eddy doubling, a single stationary point was 
estimated by eye (figure 6f). 

(ii) The vortex centres in the eddies. Before eddy doubling the vortex centre in eddy 
B (for example) is denoted by B, ; after eddy doubling the forward eddy is still denoted 
B, and the rearward one is called B, (figure 6f). 

It was difficult to measure the exact positions of the maxima and minima of the 
waves, because the wavelengths are rather long, especially for smaller values of St. 
The largest scatter in the data occurred when the same flow feature (e.g. point C) 
was measured from both the upstream and the downstream photographs taken at 
the same value oft. The maximum difference was approximately 3 mm; in such cases 
the average was recorded. The measurements for a number of experimental runs were 
checked independently by two observers, and negligible differences were found. 

Table 1 lists the governing parameters of the runs from which measurements were 
taken, and in each case also gives the (dimensionless) time t of the first photograph, 
the time interval At between successive photographs, and the number of photographs 
taken (simultaneous upstream and downstream photographs of a pair were counted 
as one). There are three sections to table 1: the first for E = 0.38, the second for 
E = 0.28 and the third for E = 0.57. In each section the runs are listed in order of 
increasing St ; the ‘run number ’ in the first column indicates the chronological order 
in which the runs were performed, which approximately corresponds to increasing 
Re. Many more photographs were taken in run 31 than in the others, in order to 
examine the eddy-doubling process in more detail. 

The results are presented graphically, with the position (2- 2J /a  of a feature on 
the abscissa and time t on the ordinate; most results are for E = 0.38. In figures 8 (a, 6 )  
the positions of the first wave crest B and the first trough C are plotted for ten 
different runs ranging in St from 0.0071 to 0.077 and in Re from 487 to 945, with 
E = 0.38. The three runs with St = 0.011 are marked by the same symbol, although 
they have significantly different Re. It can be seen that the waves propagate 
downstream with a roughly constant velocity that decreases as St increases, but may 
not be significantly affected by Re. 

The theory of $3 suggests that the (dimensionless) lengthscale of the waves should 
be proportional to St-4 (cf. (3a)) ,  and independent of Re. We have therefore replotted 
the data of figure 8, replacing the abscissa by x-xl, where 

2 
x = - (lost)?; 

a 

these plots are shown in figure 9. It can be seen that the data for wave crest B collapse 
into a narrow region for St < 0.028, but for larger values of St the points increasingly 
deviate from this narrow region as t increases above 0.5. The same is true for wave 
trough C, but with greater spread, and the departure from the common curve appears 
to occur at t < 0.5 if St 2 0.047. The data suggest that, for smaller values of St, waves 
B and C propagate with roughly constant phase velocities; the (scaled) velocities are 
found to be approximately b /d t  = 5.3 (wave B) and dz/dt = 7.2 (wave C) if straight 
lines are drawn through the data points. 

The speed of propagation of the wave front is determined by recording the positions 
of the wave crests B, C, D, E as they first appear in a photographic frame, for every 
run with E = 0.38. These positions are plotted against the time of the frame in figure 
10. This plot does not give a precise estimate of wave-front velocity, because in some 
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FIQURE 8. Measured positions of wave crest B (a) and trough C ( b )  as functions of time. The slopes 
of the lines drawn give the range of dimensionless phase velocities of the observed waves. Abscissa: 
dimensionless position (&-&J/u ; ordinate : dimensionless time t .  The symbols correspond to 
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FIGURE 9. The data of figure 8 replotted with x-x1 on the abscissa, scaled according to (5). 
Symbols aa in figure 8; the broken line merely separates C from B. 

0.7 

0.6 

0.5 

0.4 

0.3 

t A 
t t 0-7 

0.6 - 

0.5 - 
0.4 - 

A 

0. I 

I I 

0 1 2 3 4 5 6 7 

FIGURE 10. Dimensionless times and positions at which the waves in many runs were first observed : 
0,  wave B; 0, C; x , D; A, E. The line was drawn by eye through the densest clusters of points. 

x-x, 

cases the waves would have appeared before the first frame in the cycle, and in all 
other cases we know only that the wave became visible sometime between the frame 
recorded and the previous frame (cf. figure 14). Nevertheless, drawing a straight line 
through the densest clusters of points gives a value for wave-front velocity, or group 
velocity, of dz/dt x 19. This is 3.6 times the phase speed of wave B and 2.6 times 
that of wave C. 

To verify the lack of dependence on Re, we have in figure 11 plotted the positions 
of wave crests B, C and D for five different runs with B = 0.38 and with virtually the 
same value of St (0.018-0.020), but with Re varying between 485 and 950. No 
systematic difference can be observed. In addition, points for two runs with 
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FIQURE 11.  The positions of waves B, C, D, E plotted against time for several runs, all with 
approximately the same value of St, but with different Re and E.  

Run 31 22 13 26 2 33 43 48 51 
E 0.38 0.38 0.38 0.38 0.38 0.28 0.28 0.57 0.57 
st 0.019 0.019 0.019 0.018 0.020 0.020 0.019 0.021 0.015 
Re 670 873 693 950 485 502 860 482 680 
Symbol 0 0 X 0 rn + + A A 

. .  . .. 
* .  

0.34 

I I  
0.001 0.005 0.01 0.05 0. I 

st 

FIQURE 12. Semilog plots of the dimensionless position of wave B against St at different times 
in the cycle. 

comparable values of St (0.015 and 0.021) but with larger amplitude (E = 0.57) are 
also plotted. The waves are clearly further downstream in this case, but their phase 
velocity appears to be unchanged. We have also plotted points for the smaller value 
of E (0.28) and the same St (runs 33 and 43); these points cannot be distinguished 
from those for E = 0.38. 

In figure 12, z-q for wave B is plotted against St (on a semilog plot) for different 
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FIGURE 13. Position plotted against time for the wave crest/trough and vortex centres of waves 
B and C in run 31. The dots represent the wave crest/trough; the diagonal crosses represent either 
the only vortex centre or the downstream one after eddy doubling; the upright crosses represent 
the upstream vortex centre after eddy doubling. The arrows indicate the times at which eddy 
doubling takes place. 
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FIGURE 14. Semilog plots showing the times at  which waves B and C are first seen (dotted lines) 
and a t  which eddy doubling is observed (solid lines), for many runs. Each point is represented by 
a line indicating the time interval between the last photographic frame in which the flow feature 
was not seen and the first in which it waa. A cross at the bottom of a dotted line shows that the 
wave was already present in the first frame of the sequence taken, represented by the top. The thick 
lines represent run 31. 
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times t ,  using data from all runs with E = 0.38 that include measurements at these 
times. This figure confirms the impression gained from figure 9 that there is no 
systematic St-dependence for small times, but that x- x1 falls as St increases above 
0.03 when t 2 0.50. 

Information on eddy doubling, taken from run 31 (St = 0.019) is presented in figure 
13. The (scaled) positions of the wave crest B and trough C (dots), the vortex centres 
B, and C, (diagonal crosses) and, after doubling, the second vortex centres Ba and 
Ca (upright crosses) are plotted in this figure. The arrows indicate the times of 
doubling for the two eddies. Qualitatively similar results, but with many fewer points, 
were obtained from other runs. As can be seen from figure 13, and as we observed 
in cine films, the eddy-doubling process consists of the formation of a second vortex 
upstream of the first. The propagation speed of the first vortex does not change. 

Figure 14 presents data on the Strouhal-number dependence of the times of first 
appearance and doubling of eddies B and C for E = 0.38. The vertical lines in the figure 
represent the time interval, between successive frames, during which the generation 
or doubling process has taken place. The short thick lines represent run 31 in which 
the interval between successive frames is shorter. There appears to be no Systematic 
St-dependence in the (dimensionless) time at which either eddy is first seen (C of course 
arising later than B), but there is a tendency for the time of eddy doubling to increase 
with St. This increase is sharper for eddy C than for eddy B. 

3. Theory 
3.1. Inviscid theory 

In the experiments described above the longest oscillation period was approximately 
15 s, while the viscous diffusion time a*/v is of the order of 100 s. Thus one might 
expect that the flow in the core of the channel, far from the walls, would be governed 
by inviscid dynamics and that a large-Re asymptotic theory may be applicable ; we 
outline such a theory in this subsection. The neglect of viscosity is equivalent to 
assuming that the boundary layers at the walls, and the closed eddies themselves, 
are passive structures, generated in response to core-flow dynamics but not affecting 
those dynamics. There are many cases in which such an assumption is false (Smith 
1982), but the analysis of $ 3.3 indicates that it is self-consistent in the present context 
at sufficiently large values of St for all t in 0 < t < 1, and for sufficiently small t at 
all St. Important physical features that are included in the inviscid theory are 
unsteadiness, since the observed flow is not quasi-steady , and a non-zero cross-stream 
pressure gradient to account for the observed streamline curvature. As shown by 
Stephanoff et al. (1983), this theory predicts the generation of waves, and in $3.2 the 
predicted positions of the wave crests are shown to agree well with those measured 
experimentally for larger values of St. 

The present theory is further simplified by assuming that the disturbances to the 
oncoming flow have small amplitude, low frequency and long wavelength. That is, 
E 4 1, St 4 1 and A % 1, where Aa is the longitudinal lengthscale of the waves (cf. 
(3a)) .  We introduce dimensionless variables ( t ,  x, y, u, v , p )  as follows: time Tt, 
coordinates a(Ax,  y) (see figure 2), velocity components Go@, v / A ) ,  pressure p%p, 
where p = fluid density. The channel boundaries are taken to be at y = 1 and at 
y = eF(x, t ) ,  where F = 0 for I x I 2 xo (figure 2). We require steady Poiseuille flow far 
upstream; that is, 

(6) 
- 12hx 

u - UJY) = 6YU- y), p - Re 
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as x-+--oo. I n  terms of the above variables, the two-dimensional NavierStokes 
equations are as follows, where a suffix represents partial differentiation : 

U,+V, = 0, (7) 

(8) 

(9) 

A St ut + uu, + vu, = - p ,  + A Re-’(u,, + X2u,,), 

A-’ St vt + A-2(uv, + vv,) = - p ,  + A-’ Re-’(v,, + A-2v,,). 

The kinematic boundary conditions, to  be satisfied by inviscid flow, are 

I v = O  o n y = l ,  

v = E(uF,+AStF,) on y = ~F(x,t). 

The no-slip condition for a viscous fluid gives u = 0 on y = 1 and y = EF. 
We assume A 4 Re, so that viscosity is negligible in the core. We also assume 6 4 1 

and expand the dependent variables in powers of E, so that the leading term in u is 
the undisturbed flow Uo(y) .  We shall further take A St 4 1,  so that the x-momentum 
equation (8) is quasi-steady to  leading order. Combined with the long-wavelength 
approximation, this means (a) that the O(E)  term in the expansion for the pressure 
is identically zero (to avoid singularities on the walls) and (b) that the O(E)  terms in 
u and v represent nothing but a sideways displacement of the oncoming streamlines. 
Thus we have 

(11)  

u = Uo(y)  + eA(x, t )  U i ( y )  + e2u2(x, y, t) + . . . , 
v = -~A,(x,t) U , ( ~ ) + E ~ V , ( X , ~ , ~ ) +  ... , 

- 12Ax 
Re ’ 

p = s2p2(x, y , t ) +  ...- 

where A(x, t)  is the as yet unknown displacement function. The leading term in the 
y-momentum equation (9) gives 

showing that the transverse pressure gradient is proportional to the curvature A,, 
of the displaced streamlines; the function P(x, t)  is unknown. The cross-stream 
pressure gradient will be important at this order if we take A = O(E-:) ,  as recognized 
by Smith (1976b). Finally, the O ( @ )  term in (8) gives 

ASts-lA, UA+AA, Uh2+ Uo~zx-AA, Uo U i +  U ~ V ,  

= -Px-h-2~-1A22x I,” q(y’)dy’. (13) 

Again, for unsteadiness to  be important, the first term should be 0(1), and we 
therefore set St = O(6h-l) = O(&). These relationships between St, A and E are the 
same as those given by (3a).  

I n  our experiments, the parameters E and St are specified, while the lengthscale 
A of the waves is not. I n  accordance with the above scaling, we arbitrarily choose 

A = (lost)-t (14) 

(15) 

(cf. (5)). We also introduce the 0(1) parameter 

= 30h2s = 304 10 St)-:, 

so = ~ O / E ,  and ASte- l  = 3 1 ~ ~ .  
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Equation (13) can be integrated with respect to y, and a function of integration 
is introduced that accounts for the variation in flow rate required by conservation 
of mass. However, this variation in flow rate does not influence A(x, t). Assuming that 
the kinematic boundary conditions (10) may be applied, we can without integration 
evaluate (13) at the two boundaries. On the upper boundary y = 1 we obtain 

1 P, = 36 - 
(2% 

with a similar equation on y = €3’. Eliminating P then yields a single partial 
differential equation for A(x, t )  : 

(17) 

Smith & Duck (1980) derived the steady equation corresponding to this; Secomb 
(1979) derived the unsteady equation, but in the limit e,+O. Equation (17) is the 
key equation from which predictions of A(x, t) will be made in the next section. 

Where F = 0, in the upstream and downstream regions of the channel, (17) reduces 
to the linearized Korteweg-de Vries (KdV) equation. Its solution consists of the 
superposition of downstream-propagating waves whose group velocity is three times 
the phase velocity, in qualitative agreement with our observations of the wave front. 

It is interesting to note that the nonlinear term AA,, present in (13) and (l6), is 
absent in the final equation (17), because its coefficient in (13), U:, has the same value 
on both y = 0 and y = 1. The unsteady term A, does not cancel out in a similar way, 
because its coefficient Ui has different values on the two walls, i.e. the vorticity in 
the basic flow varies cross the channel. This is revealed more clearly from the vorticity 
equation : (17) can be derived by integrating the O(E*) term in the vorticity equation 
across the channel, and the A, term comes from the integral of a/at of the O(e) 
vorticity -AUg. Thus the waves owe their existence to the non-zero vorticity 
gradient in the basic flow, and we therefore call them ‘vorticity waves’. They are 
physically similar to Rossby waves in the atmosphere, albeit on a much smaller scale. 

The present waves can also be described as TollmienSchlichting waves of 
sufficiently large amplitude that viscous effects have become negligible, a limit 
analysed thoroughly by Smith & Burggraf (1985), principally in the context of 
boundary-layer instability. The TollmienSchlichting scaling (3a, a) suggests that 
this limit can be written h = 8 Ret-+a, ; a corollary is that St Ref = O(h1) -+a,, so that 
it can also be said that these are high-frequency TollmienSchlichting waves. 

A,,, - A, = +l$ + c~(FF,  + AF, + FA,). 

3.2. Remlts and comparison with experiment 
In order to make quantitative comparison with experiment we have performed 
numerical integrations of (17), with the initial condition of zero disturbance to 
Poiseuille flow: A(x,O) = 0. This condition is based on the observation that all 
disturbances are swept away at the end of the cycle. If the wavelength is very long 
and the streamline-curvature term A,,, is neglected in (17), the solution is A = -+F 
(Smith 1976a). It is therefore convenient to rewrite the equation in terms of the new 
dependent variable 

(18) 

An explicit method was used for the integration of the equation, and for numerical 
stability the time step At was required to be less than a given multiple of ( A z ) ~ ,  where 
Ax is the x-step. Since the linearized KdV equation allows the propagation of waves 
with every wave number k, at phase speed ke, it  is necessary to suppress waves 
reflected from the ends of a finite x-domain; this was done according to the recipe 

B(x, t) = A(x, t)  ++F(x, t). 
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of Vliegenthart (1971). With these precautions, however, the integration was 
straightforward and stable. 

Any sufficiently smooth function F(x,t) can be used in (17), but to model the 
experiments we considered only separable functions P(x,  t )  = f(x) ~ ( t ) ,  where 
g(t)  = t(l -cos2xt) as in (4). The experimental indentation is long, and if f(x) wtw 
defined to represent its shape accurately the computation time became excessive. 
Observation indicates that the disturbances introduced a t  the upstream end of the 
indentation do not perturb the flow at the downstream end. We therefore assumed 
an indentation shape in the form of a single step, and took B = 0 aa the upstream 
boundary condition. In  dimensional terms we chose 

f(2) = 31 - tanh [&(2-2,)]}, 

where is the midpoint of the downstream slope and & is a constant, which we set 
equal to 0.414 mm-'. This gives f = 0.01 where 8-2, = 6.4 mm, which is in good 
agreement with the real indentation. In  dimensionless terms the equation for f is 

f(4 = 31 -tanh [a(z-x,)I>, (19) 

where a = Oia(lOSt)f, Oia = 4.14. (20) 

The numerical problem now has two independent parameters 8, and a. However, 
in modelling the experiments at given yalues of s and Oia, they are both determined 
by the value of St ((15) and (20)), and are related by 

When s=O.38 the extreme values of St in the experiments, 0.0052 and 0.077, 
correspond to a = 11.1, 8, = 82.0 and a = 4.5, 8, = 13.6 respectively. Sufficient 
accuracy in the numerical integration was achieved by taking Ax = 0.13/a0.48, and 
stability was ensured by taking At = Az3/(4+s, Ax2). In  all cases the range of 2-q 
used in the calculation was -6 < z--2, < 15. 

The first comparisons between numerical solutions and experiment were made for 
fairly large values of St,  runs 10 (St = 0.057) and 4 (St = 0.037), because less computer 
time is required for smaller values of a. The results were plotted in Stephanoff et al. 
(1983) and in Pedley (1984) respectively, and are reproduced here. Figure 15 shows 
the predicted variation of A with x at different times t during a cycle for run 10. A 
positive value of A corresponds to an upward displacement of streamlines in the 
channel (see figures 2, 5 ) .  Waves are generated, grow and propagate downstream in 
a manner that is qualitatively the same as observed experimentally. If we suppose 
that a wave crest (or trough) is not visible until I A I > 0.02, then figure 15 shows that 
no waves would be seen initially; by t = 0.2 a single crest (wave B of figure 6) would 
just be visible; by t = 0.4 the first trough (wave C) would be seen, and the next crest 
(wave D) would appear between t = 0.5 and t = 0.6. Qualitatively similar waveforms 
are obtained numerically for all values of St in the range covered by the experiments. 

The maxima and minima of the predicted waveform that correspond to waves B, 
C, D, E in the experiments are marked in figure 15. Their positions are plotted as 
functions oft in figure 16(a), together with the observations from run 10; the curves 
are theoretical, the points experimental. The corresponding results for run 4 are shown 
in figure 16 (b). Each theoretical curve begins at the time when the magnitude of the 
relevant maximum or minimum equals 0.02. In the case of run 10, the agreement 
between theory and experiment for wave B is excellent, for wave C it is reasonable, 
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FIQURE 15. Graphs of A against z-sl at different times t during a cycle, computed from (17), with 
F(s, t )  given by the product of (4) and (19) and with el = 16.6, corresponding to run 10. 

but for wave D the theory significantly overestimates the downstream distance 
travelled by the wave, although the slope of the curve (the speed of propagation) is 
reasonably well predicted. In run 4, agreement is best for wave C, but is not bad for 
waves B and D. The actual wave speed &/dt is a little greater than predicted in this 
case. 
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FIGURE 17. Effect of varying (i.e. St) on the predicted positions of waves B and C: ---, 
= 5.9 (St = 0.265); -, 16.6 (0.057); ---, 32.3 (0.021). 
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FIGURE 18. Predicted and measured positions of wave crest B and trough C plotted against time. 
Solid curves: theory for E = 0.38, St = 0.021 (el = 32.3); broken curves: theory for E = 0.57, 
St = 0.021 (el = 49). Experimental points: 0 ,  run 31 ( E  = 0.38, St = 0.019), A, run 48 ( E  = 0.57, 
St = 0.021). 
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1 = 0.1 

0.2 
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FIQURE 19. As figure 15, but with g( t )  = x V .  

Agreement between theory and experiment becomes worse at .dwer values of St. 
Figure 9 shows that the experimental curves move to the right as St decreases (for 
t 2 0.45), representing a larger value of dz/dt. Figure 17, on the other hand, shows 
that the theoretical curves move to the left (a little) as St decreases, representing a 
smaller value. This is emphasized by Figure 18, in which the St = 0.021 results from 
figure 17 are compared with the data from run 31 (St = 0.019). Also included in figure 
18 are the theoretical and experimental curves for run 48, with the larger amplitude 
8 = 0.57 (St = 0.021, a = 7.0, el = 49). The theoretical curves are not in agreement 
with the observation that the waves occur further downstream at the larger 
amplitude (figure 11). Indeed, additional numerical results predict that the positions 
of the waves change very little, although their amplitudes are somewhat reduced, as 

is increased from 0 to 100, with a fixed; this is equivalent to varying the amplitude 
8 while St is held fixed. 

In figure 19, A(z ,  t )  curves are plotted for the case where g ( t )  is replaced by the first 
term of its expansion in powers oft, n2tS ; parameter values are chosen to correspond 
with run 10 (figures 14,16a) : el = 16.6, a = 5.0. It can be seen that the wave-generation 
process is not dependent upon the oscillatory form of g ( t ) ,  since here the piston 
accelerates into the channel (and through the other side for t > 0.521) for all time. 
The positions of wave crests are very little affected for t up to 0.2, although they 
propagate less rapidly downstream for later times; this is illustrated by the broken 
curves in figure 16(a). 

3.3. Boundary layers and separation 
One apparent defect in the theory of $3.1 is the fact that the expansion for u in (11) 
is not uniformly convergent near the walls, since the leading term tends to zero as 
y tends to 0 or 1 and the second term does not. Therefore there are critical layers, 
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of thickness O(E) ,  a t  the walls. However, as Smith & Duck (1980) showed for the steady 
case, the leading, O ( E ) ,  term for u in either critical layer is given identically by the 
appropriate limit of the core solution (l l) ,  and hence the critical layers are not 
important at this order. Considering the plane wall y = 1 ,  for example, and setting 
z' = (1 - y ) / e ,  u = eii, D = -e28, p = e2&q t ) ,  we obtain 

I 36 

€ 1  

C =  6(2"-A)+O(~log~),  P =  P+-A,,+O(E), 

3 6 

€1 €1 
v" = 6A,(z"- A )  +- At-- A,,,-~P,+ O(E loge), 

where the logs terms arise because the solution of (7) and (13) for u2 in the core 
involves a term that is logarithmically singular as y tends to 0 or 1 (note that the 
kinematic boundary condition can still be applied on w2 because 
2r2 = 0 [ ( 1 - y )  log(1-y)] as y + l ) .  

We now consider the viscous boundary layers on the walls, which are required 
because the perturbations to u in (1 1) do not satisfy the no-slip condition. If a scale 
for viscous-layer thickness (on either wall) is ad, a balance between the viscous term 
and the unsteady inertia term in the s-momentum equation (8) gives 

Since u = O(E)  and el = 0(1), the convective inertia terms in (8) have the same order 
of magnitude as the other terms. The fully interactive problem of Smith (19763) is 
one in which the viscous-layer thickness and the indentation height are comparable ; 
this case leads to the scaling of (3b) .  Here, however, we are interested in cases for 
which the viscous layer is much thinner than the critical layer, i.e. 8 4 E, so we require 

E % Re-?. (24) 

For the viscous layer on y = 1 we introduce new variables : 1 - y = 82, u = EU, 
v = - SEV, p = s2P(z, t )  ; the pressure gradient on this wall P, is given by (12) and (16) 
to be 

36 

€ 1  
P, = P,+- A,,, = 36 

At leading order the following, classical, unsteady boundary-layer problem emerges : 

u,+ v, = 0, 

U = V = O  onz=O,  

U - -6A(z , t )  as z+m. 

For the boundary layer on the indented wall, we make the Prandtl transformation 

38  

€1 
y - E F  = 82, v = 8~V+euF,+-  Ft, 

and the same, classical problem emerges, except that 

U - 6 ( F + A )  Z+CQ 
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and the pressure-gradient term is correspondingly altered (cf. Smith t Duck (1980) 
for the steady case). 

The problem (25) can in principle be solved for sufficiently small t when A(%, t )  is 
known from integration of (17). A semi-analytical approach is to expand in powers 
of t : let m 

m 

n-3 
B(x,t) = I: t,B,(x), 

where 

etc. The solution to the problem (25) can now be written as 

z m 

n-2 
u=  x t"U,(x,C), (=--, 2t.f 

where 

ungg+2CUng-4nUn = 24n[--nf(z)+B,(x)l+€lR,(x, 5 ;  €11, (29 1 
and the function R, depends nonlinearly on the Urn for m < n- 3 (R,  = 0 for n < 4). 
Thus U,, can be written as the sum of terms that are products of known functions 
of x with functions of 6 that satisfy linear ordinary differential equations; U ,  can 
therefore be determined completely. 

In  general the solutions of classical unsteady boundary-layer problems break down 
because a singularity arises in the solution for V after a finite time t,, at some point 
where the pressure gradient is adverse. This singularity is associated with breakaway 
separation of the boundary layer (not to be confused with skin-friction reversal, which 
first occurs at an earlier time), and has been investigated by Van Dommelen t Shen 
(1980), Elliott, Cowley t Smith (1983) and Cowley (1983b). In  the present case, if 
f i s  smooth enough for its derivatives to be 0(1), and if el = 0(1), we would expect 
t ,  = O( 1 )  too. Thus the function A ( z ,  t) and the boundary layers will begin to develop 
as predicted above, but the theory will no longer be strictly valid for t 2 t,. 

However, in the limit e1+0 (corresponding to either small amplitude or large St, 
from (15)) the solution to (25) can be written in powers of el before being expanded 
in powers of t .  The leading term satisfies the diffusion equation, and is therefore 
well-behaved for all time as long as A is well-behaved, which is true fort < 1 as shown 
in $3.2. The nonlinear terms that are responsible for the singularity come in only at 
O(s,) .  Now with A initially behaving as t2, the O(el) term starts with t6 (see (28)), the 
O(s;) term starts with t8, etc. This suggests that t,+m as el-+O, the dependence 
probably taking the form t, = O ( e 2 ) .  Thus, if el is small enough, no singularity is to 
be expected for 0 < t < 1, and the inviscid theory is self-consistent for the whole of 
an oscillation period. 

When f(x) is given by (19), with a chosen to model the indentation in our 
experiments, the x-derivatives off(x), and hence of A, are large a t  the ends of the 
indentation ; a strong adverse pressure gradient consequently develops on the 
downstream slope. Thus breakaway separation will develop there early in the cycle, 
and presumably leads to the formation of the observed separation bubble A (figure 
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6). On the plane walls, however, the pressure gradients are less steep (cf. figure 15), 
and therefore the appearance of closed eddies does not necessarily indicate that 
breakaway separation has occurred. Alternatively, even if breakaway has occurred, 
it is a matter of conjecture whether the burst of vorticity that presumably then erupts 
from the boundary layer into the inviscid core inevitably has a significant influence 
on the core flow. The eddies may still be described approximately by the boundary 
layer equations, and in that case the basic physics of the waves would be adequately 
represented by the inviscid model. Our purely inviscid model could perhaps be 
improved by incorporating the observed shape of the first separation bubble A into 
the function F(x,  t )  and then using the same inviscid model for the downstream wave 
generation. This would have the effect, in the numerical integration, of reducing the 
effective value of oi (and hence a) and of increasing the effective value of XI. According 
to the results of $3.2, the wave crests would then move further downstream, at  a faster 
rate, which would make predictions agree somewhat better with experiment (figure 
18). 

becomes smaller, the inviscid 
theory for the core flow remains valid for a longer time in the cycle. This is consistent 
with the results of 53.2, where it was shown that there is better agreement between 
theory and experiment for larger values of the Strouhal number. 

The main conclusion of this subsection is that, as 

4. Further discussion 
While the theory of 53.1 offers an explanation of the generation and propagation 

of the waves, it sheds no light on their eventual break-up, especially the eddy-doubling 
process. This is observed to happen very quickly, but thereafter the pair of eddies 
remain coherent for some time (figures 5d-f). The phenomenon thus resembles a rapid 
bifurcation from one slowly varying state to another. A possible analogy is with the 
instability of a free shear layer, which evolves quickly into a row of corotating 
vortices. Another analogy might be drawn with the Rossby-wave instability analysed 
by Haynes (1984). In that case a ‘cat’s-eye ’ pattern develops in the nonlinear critical 
layer where the fluid speed equals the Rossby-wave speed. When viscosity is small 
vorticity is advected with the fluid, so in the cat’s eyes, where the streamlines are 
closed, there is a tendency for the lines of constant vorticity to be twisted up ‘like 
spaghetti on a fork’ (M. E. McIntyre, personal remark). If the cat’s eyes are long and 
flat, the flow can be regarded as quasi-parallel, and after a certain time the vorticity 
distribution will satisfy Rayleigh’s necessary condition for instability. Numerical work 
by Haynes (1984) confirmed the presence of instability, and followed its nonlinear 
development. A similar mechanism might be anticipated here, with the closed eddies 
beneath the wave crests acting as the cat’s eyes. 

A weakness in the interpretation of the eddy-doubling process in terms of rapid 
hydrodynamic instabilities is that it  does not explain the sequence of events leading 
to the formation of the second vortex. As described in 52.2, the upstream vortex of 
a pair forms later in the cycle than the first, downstream, vortex, whereas the 
instability mechanisms would suggest simultaneous formation of the two vortices. 
A more promising conjecture, suggested by F. T. Smith, is that the formation of the 
upstream vortex of a pair represents the ejection into the flow of a burst of vorticity 
originating from the breakaway separation of the boundary layer in an adverse 
pressure gradient; see also Doligalski t Walker (1984). The evolution of such a burst 
has yet to be analysed in detail in any context, but one might expect it to take the 
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form of a single rolled-up vortex. However, much more detailed experimental 
measurements and fluid-mechanical analysis will be required before the mechanism 
of eddy doubling is fully understood. 

The ultimate breakdown of the wave-vortex system is clearly three-dimensional, 
as noted in 52.2. Orszag & Patera (1983) have shown that there exist nonlinear neutral 
or slowly-decaying disturbances to Poiseuille flow, with streamline patterns similar 
to those observed here (figure 6 4 ,  which become unstable to a very rapidly growing 
three-dimensional mode if Re 2 400. The transverse wavelength of the fastest-growing 
mode is of the order of 2a, consistent with the observed disturbance in figure 7 (d). 
The analysis of Orszag & Patera did not reveal an intermediate, two-dimensional, 
eddy-doubling mode. Further experiments are needed to determine the detailed 
three-dimensional structure of the flow disturbances in our channel in order to 
compare it with that proposed by Orszag t Patera. 

In the theory and the discussion so far we have assumed that the flow in the 
centreplane of the channel is approximately two-dimensional until the final break- 
down. This assumption is baaed on the observation that there are no significant 
transverse velocities or ilon-uniformities during the wave generation and eddy- 
doubling processes (figure 7). Nevertheless, the flow in the centreplane may be 
affected by three-dimensionality at the sidewalls; we had no way of assessing the 
effect. In  their steady-flow experiments, Armaly et al. (1983) observed such three- 
dimensional effects whenever Re > 400, but a significant influence on the centreplane 
velocity profile was not reported until Re 2 1OOO; the quantities that were most 
sensitive to three-dimensional effects were the lengths of the separated eddies. 
Bertram & Pedley (1983) also observed three-dimensionality in the primary separation 
bubble A, where fluid velocities are small compared with those in the core, for steady 
flow with Re 2 350. Sobey (1985) has observed some three-dimensionality in his 
steady- and unsteady-flow experiments at smaller Re ( < 150). A detailedexperimental 
investigation of sidewall effects in unsteady separating flow should be made in the 
future. Theoretical analysis will be difficult, however, as shown by Cowley’s (1983~)  
analysis of the three-dimensional steady-flow problem at small E ,  using the scaling 
of Smith (1976~).  

Future theoretical work should examine the interaction of vorticity waves with 
elastic boundaries, both because of the original collapsible-tube motivation and 
because of the potential relevance to aerodynamic flutter. Very few theories of flutter 
have considered the importance of vorticity in the oncoming flow (but for exceptions 
see Benjamin 1960; Garrad & Carpenter 1982; Howe 1982). Finally, we should note 
that vorticity waves may not be generated in fully three-dimensional flow such as 
that in a deformed circular tube. The cross-channel pressure difference induced by 
a non-axisymmetric perturbation in the wall of a collapsible tube can be relieved by 
secondary motions in the boundary layer, and there is no core flow displacement at 
O(E)  (Smith 1976~).  Thus the above theory cannot be applied, and no great 
simplification appears to be possible. 

The experiments described in this paper were made possible by a research grant 
from the SERC, for which we are most grateful; KDS is also grateful to the NSF 
for a US-UK Cooperative Research grant. We owe our thanks to many colleagues, 
especially to C. D. Bertram for designing much of the apparatus (particularly the 
moulded-rubber membrane), to C. J. Lawrence for taking and measuring many 
photographs, to D. Cheesley and D. Lipman for invaluable technical assistance, to 
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S. J. Cowley, M. E. McIntyre, T. W. Secomb and 0. R. Tutty for numerous discus- 
sions of the theory, and to F. T. Smith for his illuminating comments and for showing 
us a copy of Smith & Burggaf (1986) before it was published. 
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